Medical Chatbot Techniques: A Review # Medical Chatbot Techniques: A Review Andrew Reyner Wibowo Tjiptomongsoguno, Audrey Chen, Hubert Michael Sanyoto, Edy Irwansyah^(⋈), and Bayu Kanigoro School of Computer Science, Bina Nusantara University, Jakarta, Indonesia {eirwansyah,bkanigoro}@binus.edu **Abstract.** In the current world situation, people are more concerned about their health. Unfortunately, nowadays the doctor human resource is lesser than the patient. These circumstances make a lot of people who seek treatment are unhandled. Many studies can solve this problem with some kind of chatbot or health assistant. In this paper, we want to explore and deepen more about chatbots that could help people to get the same and proper treatment as a doctor would do. **Keywords:** Chatbot · Health service #### 1 Introduction In recent years, people get addicted to the internet in obtaining information for every problem they face. This not only yet people to seek knowledge about general topics but also their health concerns [15]. However, people are afraid of misinterpretation when they googled their symptoms since most search end up with creating unnecessary paranoid to the users and may sometimes inaccurate. Based on that needs, people start to develop several technologies to help people get the most accurate results on their disease. One of them is by creating a yes-no answer questionnaire system. It certainly helps, however, due to some disease have almost the same symptoms as the other, we can't rely on this yes-no system since more information need to be elaborated to obtain accuracy. Another one is creating website whereas according to Aswini [3], a medical website plays a vital role in today's digital world and a lot of forum is available for answering the queries provided by the user. The need for a reliable and accurate diagnosis wakes the rise of a new generation of healthcare technology called the Medical Chatbot. The main idea of creating this chatbot is to replicate a person's discussion [7]. This helps people to learn more about their symptoms and give them the most accurate diagnosis possible. The chatbot is also drawing upon the ever-growing medical question range, to broaden its already significant wealth of medical expertise. Many seemingly static scenes contain subtle changes that are invisible to the naked human eye. However, it is possible to pull out these small changes from videos through the use of algorithms via motion magnification [29]. Motion magnification gives a way to visualize these small changes by amplifying them and to pull out interesting signals from these videos, such as the human pulse [29]. Artificial intelligence (AI) https://doi.org/10.1007/978-3-030-63322-6_28 AQ1 [©] The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020 R. Silhavy et al. (Eds.): CoMeSySo 2020, AISC 1294, pp. 1–11, 2020. is an umbrella term for computer software consisting of a complex mathematical algorithm that processes input information to produce any specific pre-defined outputs, which lead to relevant outcomes [19]. AI systems, which utilize large datasets, can be designed to enhance decision-making and analytical processes while imitating human cognitive functions. AI has been applied in medicine and various healthcare services such as diagnostic imaging and genetic diagnosis, as well as a clinical laboratory, screening, and health communications [19]. ## 2 Theoretical Background For the technology, Bohle et al. [6] aims to create an "empathetic" embodied AI chatbot to search, retrieve, analyze, and communicate medical information and to interact with health care providers in natural language and "voice" using 3D facial expressions and gestures. There also a medical chatbot which used A Webbased text messaging application, Bonobot, was built as a research prototype to deliver the sequence in a conversation [20]. Kumar et al. [14] proposes a chatbot with system: Input gathering and data pre-processing, medical terminology detection, mapping relevant document, and generating answers and solutions. Raj et al. [22] use NLP and NLU. NLP Text converted into structured data that is used to select a probable answer. There are several steps, Sentiment Analysis, Tokenization, Named Entity Recognition, Normalization, Dependency Parsing. NLTK library used to break sentences into words and reducing words to their stem. Multinomial Naïve Bayes used for text classification. This classifier treats every word independently later organized into two dictionaries, corpus_ words, class_ words. Each word is tokenized, stemmed, and lowercased and transformed into training data. Each class generates a total score for the number of words that match. Lots of information can be lost if given the wrong training data. Dharwadkar [7] classifies the test image into the class with highest distance up to the neighboring point in the training. SVM training algorithm built a model that predict whether the test image fall into this class or another. SVM necessitate a vast training data to decide a decision boundary and computing cost is very high. The data which cannot be distinguished the input is mapped to high-dimensional attribute space where they can be separated by a hyper plane. SVM classifiers is faster to train. The accuracy of the SVM is greater than Naïve Bayes and KNN method which is near about 94% greater. Other text processing proposed by [12] is seq2seq and apriori algorithm. The seq2seq model consists of two RNN, an encoder and a decoder. The encoder takes a sentence as input and processes one word one at a time. The decoder generates words one by one in each time step of the decoder's iteration. After one complete iteration, the output is generated. The apriori algorithm is used for finding frequent item sets in a dataset for Boolean association rules. The apriori principle can reduce the number of items sets we need to examine. The algorithm uses bottom up approach where frequent subsets are extended one at a time, known as candidate generation and group of candidates are tested against the data. It states that if an item set is infrequent, then all its supersets must also be infrequent. This means that if pale eyes was found to be infrequent, we can expect pale eyes, cold to be equally or even more infrequent, so in consolidation the list of popular item sets, we need not consider pale eyes, cold, nor any other item set configuration that contains pale eyes. CARO [9] uses Facebook AI Empathetic Dialogue dataset and Medical Question Answering dataset. The Empathetic Response Generator consists of four parallel LSTM followed by Concatenation and Dense layers. It considers the previous two utterances along with the current user input to maintain the context of the conversation. The model determines the emotion of the current user-text and prepends that to the text before passing it to the model. For both the generators, we have used teacher forcing as a method of training. In this method, the output at each time instance is generated based on what the model has generated in the previous time steps where the sentence started. However, LSTM cannot detect the keywords from a sentence [5]. Bao [5] proposed HHH using knowledge graph and Hierarchical Bi-Directional Attention. The knowledge graph is developed by Neo4j with data from the Health Navigator New Zealand, common illnesses and symptom and common diseases and conditions. When a user's question is given as input, it can be processed by two QA retrieval modules. (1) The information from "Web Interface Interaction" will be transferred into the information retrieval module. If the answer can be extracted directly from the knowledge graph dataset, the information retrieval module can retrieve and return the answer. (2) If, on the other hand, the required answer cannot be found from the knowledge graph. In this case, the question will be transferred into the question-answer pair retrieval module. HBAM will be used to check the semantic similarity of the user's question and the questions from the question-answer pair dataset. The top-k most similar questions will be returned as the answer set. The last is Ensemble Learning [4]. Ensemble Learning depends on the presumption that diverse models trained autonomously are probably going to be useful for various reasons. Each model looks at marginally different parts of the data to make predictions, and getting some portion of reality however not every last bit of it. The popular methods of combining the classifiers in ensemble learning are mixture of experts, majority voting ensemble, boosting, bagging and stacking. Majority voting ensemble is actually a combiner method that can be used alongside stacking based ensemble learning. Stacking is based on a heterogeneous set of weak learners. Every classifier is trained autonomously, and final choice is made by a majority vote, averaging the result. Since the results are derived using ensemble learning of all classifiers and not a single classifier that could possibly dominate, it is a simple and efficient approach to combine weak and/or dominant classifiers while providing a good balanced output. In this paper, we take 27 other paper as a foundation about the chatbot, especially our paper discusses medical chatbot techniques. The papers are shown in Table 1. Table 1. Recent works of medical chatbot techniques. | No | Title | Methodology | | | Pros and Cons | |----|--|---|--|---|--| | | | Method | Algorithm,
Architecture,
Model, etc. | Dataset | | | 1 | A medical chatbot [7] | Support vector
machine
algorithm, NLP,
Word Order
similarity among
sentences | Support vector
machine, Natural
language
processing | Heart-disease
dataset | Advantage: SVM can
solve more complex
classification and faster
training. Disadvantage:
NLP misinterpret | | 2 | Diabot: a
predictive medical
chatbot using
ensemble learning
[4] | Ensemble learning | Classifier trained
autonomously and
final choice is
made by a
majority vote,
stacking-based
ensemble learning
with majority
voting ensemble
as combiner | General health
dataset and the
Pima Indian
diabetes dataset | Advantage: No
Dominating classifiers.
Disadvantage:
Computation and
design time are high | | 3 | HHH: An online
medical chatbot
system based on
knowledge graph
and hierarchical
bi-directional
attention [5] | Knowledge graph
and hierarchical
bi-directional
attention | Architecture:
hybrid QA model
framework,
combines a
knowledge graph
to manage a
medical dataset
and HBAM to
understand the
text | 3,500 entities
(which include
675 diseases and
2825 symptoms)
and 4,500
relationships. The
relationship
includes the
relationship
between the
diseases,
symptoms, and
the other 6
properties | Advantage: Utilizes structured storage so that it may help easy maintenance and retrieval of domain-specific knowledge. While the advantage of the attention model utilizes deep learning to represent better and comprehend natural language questions. Disadvantage: Complex work | | 4 | Chatbot for
medical treatment
using NLTK Lib
[11] | NLTK | Breaking words,
POS tagging, dot
product to
measure similarity | Wordnet, NLTK
collection reader,
a word database
for English | Advantages: Easier to
make. Disadvantages:
There are some cases
where the output
hasvery low cosine
similarity, and the
answer may or may not
be an exact match | | 5 | Emergency
patient care
system using
chatbot [22] | NLU, NLTP,
Multinomial Naive
Bayes | Sentiment Analysis, Tokenization, Named Entity Recognition, Normalization, Dependency Parsing | Corpus_words,
class_words | Advantage: Simple to
build. Disadvantage: No
data provided for
disease | | 6 | A personalized
medical assistant
chatbot: MediBot
[12] | RNN, NLP,
Speech to text | Sequence-to-
Sequence Model,
Apriori | The model has
been trained on
the Cornell Movie
Corpus dialogue
dataset, se. The
model is trained
on dataset
available from the
New York
Presbyterian
Hospital | Advantage: The apriori principle can reduce the number of items sets we need to examine. Disadvantage: Lack of correct and accurate medical dataset, There is one more big challenge that the seq2seq model requires a lot of time for training even though the hardware is capable of handling it | (continued) Table 1. (continued) | No | Title | Methodology | | | Pros and Cons | |----|---|--|---|---|---| | 7 | CARO: An
empathetic health
conversational
chatbot for people
with major
depression [9] | Teacher forcing | A medical advice
generator, and a
general
empathetic
conversation
generator with
four parallel
LSTM layers
followed by
Concatenation
and Dense layers | Facebook AI
Empathetic
Dialogue [3]
dataset and
Medical Question
Answering dataset
[2] | Advantage: Accuracy of
intent classifier was
98.5% and that of
emotion classifier was
92.4% Disadvantage:
Poor model
performance and
instability | | 8 | What's up, doc? a
medical diagnosis
bot [1] | Text Mining with
Wit.ai and use
APIMedic | GloVe vectors, APIMedic | A survey of
demographic
information, a
natural language
description of
symptoms, further
elaboration on the
symptoms, and
the presumed
diagnosis and
ApiMedic
database | Advantage: Complete
dataset from API medic
and easier to check
symptom.
Disadvantage: Not
accurate result | | 9 | Clinical medical
knowledge
extraction using
crowdsourcing
techniques [3] | MKE system | Truth discovery
method,
Trustworthy
calculation | Guided interview, | Advantage: Variety of
data. Disadvantage:
Noisy dataset, | | 10 | Automated
medical chatbot
[23] | Detect pattern
using AIML | NLP and
Classification | Medical QA
Forum | Can capture long chat,
provides solution
directly | | 11 | A conversational
chatbot based on
kowledge-graphs
for factoid medical
questions [16] | Kowledge-graph
for factoid
medical question | Natural language
Intrepeter, Dialog
Manager, Natural
Language
Generator | RDF Data | Efficient handle the
dialog, ask missing
information, generate
more precise and
contextualized response | | 12 | "Plutchik":
artificial
intelligence
chatbot for
searching NCBI
databases | Customized
programming
using AIML and
LSL | Tensor Flow
Algorithms and
Data Visualization | NCBI suite of
databases | Voice enabled | | 13 | SHIHbot: a
facebook chatbot
for sexual health
information on
HIV/AIDS | Use NPCEditor to
drive chatbot
responses, a
dialogue manager,
and plugins to
Facebook | Classification and
NLP | Online Survey,
QA in SHIHbot
Domain | The live conversations will exhibit SHIHbot's ability to understand new questions, the chatbot's ability to cope with being asked questions outside of the domain knowledge, and the overall flow of dialogue | | 14 | A survey on
chatbot
implementation in
health care using
NLTK [25] | Using NLTK | NLP | QA Record | User Friendly, Can be used by any person who knows how to type in their own language in mobile app or desktop version, Provides personalized diagnoses based on symptoms | $\frac{1}{(continued)}$ Table 1. (continued) | No | Title | Methodology | | | Pros and Cons | |----|--|---|--|---|--| | 15 | Conception and
realization of a
chatbotsystem to
support
psychological and
medical
procedures [28] | Conversation
SDK, TaskQueue,
ConversationCase | SVM, with some
pre training by
IBM. Entities use
a fuzzy matching
algorithm | Chat History | Only possible to implement the mobile application that is used to test the developed frameworks, This application allows the user to interact with it by asking questions about a specific topic, It represents the virtual assistant that can be used by patients and experts | | 16 | Designing a
chatbot for a brief
motivational
interview on stress
management:
qualitative case
study [20] | | Braun and
Clarke's thematic
method | Survey of
demographic
information and
perceived stress
and a
semistructured
interview | The bot give encouragement | | 17 | Quro: facilitating
user symtom
check using a
personalised
chatbot - oriented
dialogue system
[8] | Using UMLS | NLP and Data
mining | Medical triage data | Provides a
pre-assessment of
probable conditions
using learning
algorithms across 7
million medical entities
and patterns over a
large-scale knowledge
graph | | 18 | Sanative chatbot
for health seekers
[13] | Input gathering
and data
pre-processing,
Medical
terminology
detection,
Mapping relevant
document,
Generating
answers and
solutions | Comparing the
medical keywords
in the query | Internet history
search, Medical
report | Relevant keyword
Selection process,
Handle large-scale data | | 19 | Self- diagnosis
medical chat-bot
using artificial
intelligence [24] | Implementing NLP to analyse human language | Natural language
processing | Literature Survey | NLP can be wrong in
answering questions | | 20 | Chatbots meet
eHealth:
automatizing
healthcare [2] | Case study | Using IBM Watson Conversation APIs by understanding natural language, Machine learning algorithm using Spark | Patient records
from C.M.O
center | Adaptable | | 21 | Intelligent
healthbot for
transforming
healthcare [10] | Study of existing system | NLP, Machine
learning | HealtData site | | $\overline{(continued)}$ Table 1. (continued) | No | Title | Methodology | | | Pros and Cons | |----|---|--|--|---|--| | 22 | Smart medical
chatbot with
integrated
contactless vital
sign monitor [29] | Database and
automated
diagnosis, Motion
magnification,
Proposed
algorithm
pipeline,
Contactless vital
sign monitor | Proposed algorithm | Clinical data set | High possibility to get accurate results. | | 23 | Chatbot in mental
health care [26] | Implementing
NLP | NLP | Online survey | Flexible but not able to show human emotions. | | 24 | Acceptability of
artificial
intelligence
(AI)-led chatbot
services in
healthcare: a
mixed-methods
study [19] | Design, Data
collection, Data
analysis | AI hesitancy | Semi-structured
interviews by
online survey | Easy to analyze | | 25 | Trust Me, I'm a
Chatbot: How
artificial
intelligence in
health care fails
the turing test
[21] | Data collection,
Data analysis | Artificial neural network | Image scans | Easy to analyze | | 26 | Trust in health chatbots [27] | Objectives, Data
collection, Data
analysis, System
requirement | Neural Network | Medical dataset | Requires a lot of data | | 27 | Mobile-based
medical health
application -
MediChat App
[17] | General
objectives,
Specific
objectives, System
requirement
specification,
Functional
requirements,
Non-functional
requirements | Firebase for
backend, Android
for frontend | Survey on similar
system | It's easy to get
under everywhere
because it's
mobile | # 3 Methodology This paper uses PRISMA checklist methodology [18] as the model of systematic review. We have chosen the PRISMA method because PRISMA is the recognized standard for reporting evidence in systematic reviews and meta-analyses. Figure 1 provides an overview of the number of journals, papers and articles that have been reviewed for the usage of writing this paper. Fig. 1. PRISMA checklist methodology. #### 4 Result and Discussion There several techniques used for a chatbot. The techniques that they use can we can classify as NLP, Machine Learning, Braun and Clarke's, Compare Keyword, and Data Mining. Ghosh et al. [8] have a research chatbot using data mining and natural language processing. NLP generation for user responses is based on predefined templates and system initiative to prompt easily interpretable responses from the user. Gajendra et al. [12] are also using NLP on his chatbot project. Based on his research we know that the goal of NLP is to take the unstructured output of the text input that is given as input to their chatbot system. Lastly, Raj et al. [22] also use NLP as on their chatbot system. Based on their research we can get the sentiment analysis of user experience with a chatbot. NLP also used to tokenize user input (string) to pieces or token so it can be processed by the system. Paper that uses machine learning is [4], which implements machine learning and the key contributions of their work are ensemble learning. We learn that ensemble learning is going to be useful for various reasons such as each model looks at marginally different parts of the data to make predictions, getting some portion of reality however not every bit of it. Other papers, [7] also using machine learning with a support vector machine algorithm. From this paper, we learn SVM can distinguish two classes and discover the finest distinguishing hyperplane which minimizes the error for an unseen pattern. This constitutes for RQ1: What technique preferred for a chatbot? The algorithm that matches medical chatbot is machine learning and natural language processing. There are some of the different algorithms used at machine learning such as ensemble learning, supervised and unsupervised learning, artificial neural network, binary regression, and classification. The NLP technique is for process the raw input from the user to a token that the machine learning can understand. Gajendra et al. [12] uses NLP to take the unstructured output of the Google API, which text input, is given as input to their chatbot system. After the text input is processed, the chatbot will respond with a series of questions to understand the situation of the user better. So basically, they use NLP to extract the keyword from the user input so it can be processed by the machine learning. Bali et al. [4] used Ensemble Learning to predict user disease base on the user symptoms that are given in the user input in the format of the token or processed string. This constitutes for RQ2: What technique preferred for a medical chatbot? ### 5 Conclusion For short our paper discussed all the studies that related to a chatbot, especially medical chatbot. We learn and research the paper about how to make a chatbot, what kind algorithm the chatbot uses, and how to get the data set to train the chatbot. We see that there is a lot of algorithms we can use to make a chatbot like natural language processing, machine learning, Braun and Clarke's algorithm, compare keyword, and data mining. From those algorithms, we have seen that the most match algorithm for a chatbot is natural language processing and machine learning. The major papers use natural language processing techniques to process the user input, that usually formatted as a string, to a format that the program can process. The raw input (string) can't be processed by the program or the architecture. The string format usually processed with the NLP method becomes a tokenized format. The tokenize format can be processed easily for the program rather than the string format. After the user inputs are tokenized, it can be processed with machine learning such as classification to process the symptoms and match to the disease that available in the classification training. So the most suitable algorithm to make a chatbot from our point of view are NLP and Machine Learning. ## References - 1. Agrawal, M., Cheng, J., Tran, C.: What's up, doc? a medical diagnosis bot - Amato, F., Marrone, S., Moscato, V., Piantadosi, G., Picariello, A., Sansone, C.: Chatbots meet ehealth: Automatizing healthcare. In: Workshop on Artificial Intelligence with Application in Health, Bari, Ital, pp. 40–49 (2017) - 3. Aswini, D.: Clinical medical knowledge extraction using crowdsourcing techniques. Int. Res. J. Eng. Technol. 6 (2019) - 4. Bali, M., Mohanty, S., Chatterjee, S., Sarma, M., Puravankara, R.: Diabot: A predictive medical chatbot using ensemble learning - Bao, Q., Ni, L., Liu, J.: Hhh: an online medical chatbot system based on knowledge graph and hierarchical bi-directional attention. In: Proceedings of the Australasian Computer Science Week Multiconference, pp. 1–10 (2020) - Bohle, S.: "Plutchik" artificial intelligence chatbot for searching NCBI databases. J. Med. Libr. Assoc. JMLA 106(4), 501 (2018) - Dharwadkar, R., Deshpande, N.A.: A medical chatbot. Int. J. Comput. Trends Technol. (IJCTT) 60, 41–45 (2018) - Ghosh, S., Bhatia, S., Bhatia, A.: Quro: facilitating user symptom check using a personalised chatbot-oriented dialogue system. Stud. Health Technol. Inform. 252, 51–56 (2018) - Harilal, N., Shah, R., Sharma, S., Bhutani, V.: CARO: an empathetic health conversational chatbot for people with major depression. In: Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, pp. 349–350 (2020) - Kadu, O., Sihasane, S., Naik, S., Katariya, V., Gutte, V.S.: Intelligent healthbot for transforming healthcare. Int. J. Trend Sci. Res. Dev. (IJTSRD) 3(3), 1576–1579 (2019) - Kalla, D., Samiuddin, V.: Chatbot for medical treatment using NLTK Lib. IOSR J. Comput. Eng. 22 (2020) - KC, G.P., Ranjan, S., Ankit, T., Kumar, V.: A personalized medical assistant chatbot: Medibot. Int. J. Sci. Technol. Eng. 5(7) (2019) - Keerthana, V.M.K.A., Madhumitha, M., Valliammai, S., Vinithasri, V.: Sanative chatbot for health seekers. Int. J. Eng. Comput. Sci. 5(3) (2016) - Kumar, M.N., Chandar, P.L., Prasad, A.V., Sumangali, K.: Android based educational chatbot for visually impaired people. In: 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1–4. IEEE (2016) - Kumar, V.M., Keerthana, A., Madhumitha, M., Valliammai, S., Vinithasri, V.: Sanative chatbot for health seekers. Int. J. Eng. Comput. Sci. 5(03), 16022–16025 (2016) - Minutolo, A., Esposito, M., De Pietro, G.: A conversational chatbot based on kowledge-graphs for factoid medical questions. In: SoMeT, pp. 139–152 (2017) - Mohammed, M.A., Bright, A.S., Ashigbe, F.D., Somuah, C.: Mobile-based medical health application-medichat app. Int. J. Sci. Technol. Res. 6 (2017) - Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L.A., et al.: Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015 statement. Syst. Rev. 4(1), 1 (2015) - Nadarzynski, T., Miles, O., Cowie, A., Ridge, D.: Acceptability of artificial intelligence (ai)-led chatbot services in healthcare: A mixed-methods study. Digit. Health 5, 2055207619871808 (2019) - Park, S., Choi, J., Lee, S., Oh, C., Kim, C., La, S., Lee, J., Suh, B.: Designing a chatbot for a brief motivational interview on stress management: qualitative case study. J. Med. Internet Res. 21(4), e12231 (2019) - 21. Powell, J.: Trust me, i'ma chatbot: How artificial intelligence in health care fails the turing test. J. Med. Internet Res. **21**(10), e16222 (2019) - Raj, P., Murali Krishna, R., Krishna, S.M., Vardhan, K.H., Rao, K.: Emergency patient care system using chatbot. Int. J. Technol. Res. Eng. 6 (2019) - Rarhi, K., Bhattacharya, A., Mishra, A., Mandal, K.: Automated medical chatbot. SSRN (2017) - 24. Shifa, G., Sabreen, S., Bano, S.T., Fakih, A.H.: Self-diagnosis medical chat-bot using artificial intelligence. Easychair (2020) - Sophia, J.J., Kumar, D.A., Arutselvan, M., Ram, S.B.: A survey on chatbot implementation in health care using NLTK. Int. J. Comput. Sci. Mob. Comput. 9 (2020) - Vijayarani, M., Balamurugan, G., et al.: Chatbot in mental health care. Indian J. Psychiatr. Nurs. 16(2), 126 (2019) - 27. Wang, W., Siau, K.: Trust in health chatbots. Thirty ninth International Conference on Information Systems (2018) - 28. Winkler, J.: Conception and Realization of a Chatbot-System to support Psychological and Medical Procedures. Ph.D. thesis, Ulm University (2019) - 29. Zaki, W.M.A.W., Shakhih, M.F.M., Ramlee, M.H., Ab Wahab, A.: Smart medical chatbot with integrated contactless vital sign monitor. J. Phys. Conf. Ser. 1372, 012025 (2019)